(0) Obligation:
The Runtime Complexity (innermost) of the given
CpxTRS could be proven to be
BOUNDS(1, n^1).
The TRS R consists of the following rules:
minus(0, Y) → 0
minus(s(X), s(Y)) → minus(X, Y)
geq(X, 0) → true
geq(0, s(Y)) → false
geq(s(X), s(Y)) → geq(X, Y)
div(0, s(Y)) → 0
div(s(X), s(Y)) → if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0)
if(true, X, Y) → X
if(false, X, Y) → Y
Rewrite Strategy: INNERMOST
(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)
Converted Cpx (relative) TRS to CDT
(2) Obligation:
Complexity Dependency Tuples Problem
Rules:
minus(0, z0) → 0
minus(s(z0), s(z1)) → minus(z0, z1)
geq(z0, 0) → true
geq(0, s(z0)) → false
geq(s(z0), s(z1)) → geq(z0, z1)
div(0, s(z0)) → 0
div(s(z0), s(z1)) → if(geq(z0, z1), s(div(minus(z0, z1), s(z1))), 0)
if(true, z0, z1) → z0
if(false, z0, z1) → z1
Tuples:
MINUS(0, z0) → c
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
GEQ(z0, 0) → c2
GEQ(0, s(z0)) → c3
GEQ(s(z0), s(z1)) → c4(GEQ(z0, z1))
DIV(0, s(z0)) → c5
DIV(s(z0), s(z1)) → c6(IF(geq(z0, z1), s(div(minus(z0, z1), s(z1))), 0), GEQ(z0, z1), DIV(minus(z0, z1), s(z1)), MINUS(z0, z1))
IF(true, z0, z1) → c7
IF(false, z0, z1) → c8
S tuples:
MINUS(0, z0) → c
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
GEQ(z0, 0) → c2
GEQ(0, s(z0)) → c3
GEQ(s(z0), s(z1)) → c4(GEQ(z0, z1))
DIV(0, s(z0)) → c5
DIV(s(z0), s(z1)) → c6(IF(geq(z0, z1), s(div(minus(z0, z1), s(z1))), 0), GEQ(z0, z1), DIV(minus(z0, z1), s(z1)), MINUS(z0, z1))
IF(true, z0, z1) → c7
IF(false, z0, z1) → c8
K tuples:none
Defined Rule Symbols:
minus, geq, div, if
Defined Pair Symbols:
MINUS, GEQ, DIV, IF
Compound Symbols:
c, c1, c2, c3, c4, c5, c6, c7, c8
(3) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 6 trailing nodes:
IF(true, z0, z1) → c7
IF(false, z0, z1) → c8
MINUS(0, z0) → c
DIV(0, s(z0)) → c5
GEQ(z0, 0) → c2
GEQ(0, s(z0)) → c3
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
minus(0, z0) → 0
minus(s(z0), s(z1)) → minus(z0, z1)
geq(z0, 0) → true
geq(0, s(z0)) → false
geq(s(z0), s(z1)) → geq(z0, z1)
div(0, s(z0)) → 0
div(s(z0), s(z1)) → if(geq(z0, z1), s(div(minus(z0, z1), s(z1))), 0)
if(true, z0, z1) → z0
if(false, z0, z1) → z1
Tuples:
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
GEQ(s(z0), s(z1)) → c4(GEQ(z0, z1))
DIV(s(z0), s(z1)) → c6(IF(geq(z0, z1), s(div(minus(z0, z1), s(z1))), 0), GEQ(z0, z1), DIV(minus(z0, z1), s(z1)), MINUS(z0, z1))
S tuples:
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
GEQ(s(z0), s(z1)) → c4(GEQ(z0, z1))
DIV(s(z0), s(z1)) → c6(IF(geq(z0, z1), s(div(minus(z0, z1), s(z1))), 0), GEQ(z0, z1), DIV(minus(z0, z1), s(z1)), MINUS(z0, z1))
K tuples:none
Defined Rule Symbols:
minus, geq, div, if
Defined Pair Symbols:
MINUS, GEQ, DIV
Compound Symbols:
c1, c4, c6
(5) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing tuple parts
(6) Obligation:
Complexity Dependency Tuples Problem
Rules:
minus(0, z0) → 0
minus(s(z0), s(z1)) → minus(z0, z1)
geq(z0, 0) → true
geq(0, s(z0)) → false
geq(s(z0), s(z1)) → geq(z0, z1)
div(0, s(z0)) → 0
div(s(z0), s(z1)) → if(geq(z0, z1), s(div(minus(z0, z1), s(z1))), 0)
if(true, z0, z1) → z0
if(false, z0, z1) → z1
Tuples:
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
GEQ(s(z0), s(z1)) → c4(GEQ(z0, z1))
DIV(s(z0), s(z1)) → c6(GEQ(z0, z1), DIV(minus(z0, z1), s(z1)), MINUS(z0, z1))
S tuples:
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
GEQ(s(z0), s(z1)) → c4(GEQ(z0, z1))
DIV(s(z0), s(z1)) → c6(GEQ(z0, z1), DIV(minus(z0, z1), s(z1)), MINUS(z0, z1))
K tuples:none
Defined Rule Symbols:
minus, geq, div, if
Defined Pair Symbols:
MINUS, GEQ, DIV
Compound Symbols:
c1, c4, c6
(7) CdtUsableRulesProof (EQUIVALENT transformation)
The following rules are not usable and were removed:
geq(z0, 0) → true
geq(0, s(z0)) → false
geq(s(z0), s(z1)) → geq(z0, z1)
div(0, s(z0)) → 0
div(s(z0), s(z1)) → if(geq(z0, z1), s(div(minus(z0, z1), s(z1))), 0)
if(true, z0, z1) → z0
if(false, z0, z1) → z1
(8) Obligation:
Complexity Dependency Tuples Problem
Rules:
minus(0, z0) → 0
minus(s(z0), s(z1)) → minus(z0, z1)
Tuples:
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
GEQ(s(z0), s(z1)) → c4(GEQ(z0, z1))
DIV(s(z0), s(z1)) → c6(GEQ(z0, z1), DIV(minus(z0, z1), s(z1)), MINUS(z0, z1))
S tuples:
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
GEQ(s(z0), s(z1)) → c4(GEQ(z0, z1))
DIV(s(z0), s(z1)) → c6(GEQ(z0, z1), DIV(minus(z0, z1), s(z1)), MINUS(z0, z1))
K tuples:none
Defined Rule Symbols:
minus
Defined Pair Symbols:
MINUS, GEQ, DIV
Compound Symbols:
c1, c4, c6
(9) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
DIV(s(z0), s(z1)) → c6(GEQ(z0, z1), DIV(minus(z0, z1), s(z1)), MINUS(z0, z1))
We considered the (Usable) Rules:
minus(s(z0), s(z1)) → minus(z0, z1)
minus(0, z0) → 0
And the Tuples:
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
GEQ(s(z0), s(z1)) → c4(GEQ(z0, z1))
DIV(s(z0), s(z1)) → c6(GEQ(z0, z1), DIV(minus(z0, z1), s(z1)), MINUS(z0, z1))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = [1]
POL(DIV(x1, x2)) = [2]x1
POL(GEQ(x1, x2)) = 0
POL(MINUS(x1, x2)) = 0
POL(c1(x1)) = x1
POL(c4(x1)) = x1
POL(c6(x1, x2, x3)) = x1 + x2 + x3
POL(minus(x1, x2)) = [2]
POL(s(x1)) = [3]
(10) Obligation:
Complexity Dependency Tuples Problem
Rules:
minus(0, z0) → 0
minus(s(z0), s(z1)) → minus(z0, z1)
Tuples:
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
GEQ(s(z0), s(z1)) → c4(GEQ(z0, z1))
DIV(s(z0), s(z1)) → c6(GEQ(z0, z1), DIV(minus(z0, z1), s(z1)), MINUS(z0, z1))
S tuples:
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
GEQ(s(z0), s(z1)) → c4(GEQ(z0, z1))
K tuples:
DIV(s(z0), s(z1)) → c6(GEQ(z0, z1), DIV(minus(z0, z1), s(z1)), MINUS(z0, z1))
Defined Rule Symbols:
minus
Defined Pair Symbols:
MINUS, GEQ, DIV
Compound Symbols:
c1, c4, c6
(11) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
GEQ(s(z0), s(z1)) → c4(GEQ(z0, z1))
We considered the (Usable) Rules:
minus(s(z0), s(z1)) → minus(z0, z1)
minus(0, z0) → 0
And the Tuples:
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
GEQ(s(z0), s(z1)) → c4(GEQ(z0, z1))
DIV(s(z0), s(z1)) → c6(GEQ(z0, z1), DIV(minus(z0, z1), s(z1)), MINUS(z0, z1))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = 0
POL(DIV(x1, x2)) = [3]x1
POL(GEQ(x1, x2)) = x1
POL(MINUS(x1, x2)) = [2]x1
POL(c1(x1)) = x1
POL(c4(x1)) = x1
POL(c6(x1, x2, x3)) = x1 + x2 + x3
POL(minus(x1, x2)) = 0
POL(s(x1)) = [1] + x1
(12) Obligation:
Complexity Dependency Tuples Problem
Rules:
minus(0, z0) → 0
minus(s(z0), s(z1)) → minus(z0, z1)
Tuples:
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
GEQ(s(z0), s(z1)) → c4(GEQ(z0, z1))
DIV(s(z0), s(z1)) → c6(GEQ(z0, z1), DIV(minus(z0, z1), s(z1)), MINUS(z0, z1))
S tuples:none
K tuples:
DIV(s(z0), s(z1)) → c6(GEQ(z0, z1), DIV(minus(z0, z1), s(z1)), MINUS(z0, z1))
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
GEQ(s(z0), s(z1)) → c4(GEQ(z0, z1))
Defined Rule Symbols:
minus
Defined Pair Symbols:
MINUS, GEQ, DIV
Compound Symbols:
c1, c4, c6
(13) SIsEmptyProof (BOTH BOUNDS(ID, ID) transformation)
The set S is empty
(14) BOUNDS(1, 1)